
ChainScan Documentation
Release 0.1

fungibit

Sep 04, 2017





Contents:

1 What is ChainScan? 3

2 Getting Started 5

3 Features 7

4 Design and Goals 9

5 Speed 11

6 Development Status 13

7 More 15

i



ii



ChainScan Documentation, Release 0.1

Feel the blockchain, one transaction at a time.

Contents: 1



ChainScan Documentation, Release 0.1

2 Contents:



CHAPTER 1

What is ChainScan?

ChainScan is a python library implementing simple tools for iterating over the Bitcoin blockchain, block by block,
transaction by transaction.

3



ChainScan Documentation, Release 0.1

4 Chapter 1. What is ChainScan?



CHAPTER 2

Getting Started

Install using pip:

pip install chainscan

For an easy start, see the examples.

5



ChainScan Documentation, Release 0.1

6 Chapter 2. Getting Started



CHAPTER 3

Features

Some of the notable features supported:

• Iterate over blocks in the longest chain

• Iterate over all blocks from all forks (in topological order)

• “Tracked spending”: For each tx input, resolve the tx output spent by it

• Resumability: All iterators are resumable. You can pickle them, and later reload them, picking up from where
you left off.

• Tailability: You can keep waiting for the next blocks to arrive. The iterator will return the next blocks/txs as
they arrive (think tail -f, or MongoDB’s tailable cursor)

• A BlockChain data structure, supporting block lookup by hash or height

7



ChainScan Documentation, Release 0.1

8 Chapter 3. Features



CHAPTER 4

Design and Goals

ChainScan is focused on the (surprisingly complicated) task of iterating over the Bitcoin blockchain.

ChainScan does not aim at being “everything bitcoin” or a one-stop-shop solution. Various other python libraries
already implement many of the tools you’d need for your bitcoin development tasks (python-bitcoinlib, python-
libbitcoin, and pybitcointools, to name the main ones).

ChainScan aims at being simple-yet-powerful. This package has been carefully designed for simplicity, flexibility,
extensibility, and customizability, so that it can be useful for a wide variaty of usages.

The basic entities (e.g., the Block and Tx classes) are deliberately simple and minimalistic. You’d often want to use
ChainScan along with another library – ChainScan will take care of the looping, the other library with what you want
to do foreach block or foreach tx. (See the examples.)

9



ChainScan Documentation, Release 0.1

10 Chapter 4. Design and Goals



CHAPTER 5

Speed

ChainScan is fast because it reads the blockchain data directly from the block data files (blk*.dat), rather than using
bitcoind’s RPC, which is slow, and also subject to communication errors.

ChainScan is not super-fast, however, because it is written in python. Alternative implementations in C (for example)
will likely be faster.

The reason python was chosen is for its ease-of-use. See the design section of the docs to get a better feeling of why
python is good here.

That said, efforts have been made for making this library as fast as possible, without compromising its design princi-
ples. Some parts of the implementation are using Cython. Many more speed improvements are coming soon.

11



ChainScan Documentation, Release 0.1

12 Chapter 5. Speed



CHAPTER 6

Development Status

ChainScan is at an early stage of its development, yet the current release can already be useful to many.

The next releases may not be backward compatible.

Bug reports, suggestions and contributions are appreciated.

Issues are tracked on github.

13

https://github.com/fungibit/chainscan/issues


ChainScan Documentation, Release 0.1

14 Chapter 6. Development Status



CHAPTER 7

More

• genindex

• modindex

• search

15


	What is ChainScan?
	Getting Started
	Features
	Design and Goals
	Speed
	Development Status
	More

